Efficient Gibbs sampling for Markov switching GARCH models
نویسندگان
چکیده
منابع مشابه
Gibbs Sampling Approach to Markov Switching Models in Finance
In the present paper we apply the Gibbs Sampling approach to estimate the parameters of a Markov Switching Model which we use to model financial time series. In particular, we estimate the standard deviation of the time series in order to obtain an indicator similar to the VIX index. The Markov Switching technique has been chosen because of the presence of exogenous factors which can have a lar...
متن کاملEstimating Markov Switching model using Gibbs sampling
The objective of this paper is to provide readers with the program to estimate a Markov switching model with time varying transition probability(Filardo, 1994) by using a statistical computing software R. Although many of the previous studies estimating the model have conducted the estimation by the maximum likelihood estimation, this paper utilizes Gibbs sampling method. Using Gibbs sampling m...
متن کاملA Bayesian MCMC Algorithm for Markov Switching GARCH models
Markov switching GARCH models have been developed in order to address the statistical regularity observed in financial time series such as strong persistence of conditional variance. However, Maximum Likelihood Estimation faces a implementation problem since the conditional variance depends on all the past history of state. This paper shows that this problem can be handled easily in Bayesian in...
متن کاملGibbs sampling for parsimonious Markov models with latent variables
Parsimonious Markov models have been recently developed as a generalization of variable order Markov models. Many practical applications involve a setting with latent variables, with a common example being mixture models. Here, we propose a Bayesian model averaging approach for learning mixtures of parsimonious Markov models that is based on Gibbs sampling. The challenging problem is sampling o...
متن کاملRegime Switching Garch Models
We develop univariate regime-switching GARCH (RS-GARCH) models wherein the conditional variance switches in time from one GARCH process to another. The switching is governed by a time-varying probability, specified as a function of past information. We provide sufficient conditions for geometric ergodicity and existence of moments. Because of path dependence, maximum likelihood estimation is no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2016
ISSN: 0167-9473
DOI: 10.1016/j.csda.2014.04.011